Fitness costs may explain the post-colonisation erosion of phenotypic plasticity.

نویسندگان

  • F Aubret
  • R Shine
چکیده

Many organisms can adjust their phenotypes to match local environmental conditions via shifts in developmental trajectories, rather than relying on changes in gene frequencies wrought by natural selection. Adaptive developmental plasticity confers obvious benefits in terms of rapid response and higher mean fitness, so why is it not more common? Plausibly, adaptive plasticity also confers a cost; reshaping the phenotype takes time and energy, so that canalised control of trait values enhances fitness if the optimal phenotype remains the same from one generation to the next. Although this idea is central to interpreting the fitness consequences of adaptive plasticity, empirical data on costs of plasticity are scarce. In Australian tiger snakes, larger relative head size enhances maximal ingestible prey size on islands containing large prey. The trait arises via adaptive plasticity in snake populations on newly colonised islands but becomes genetically canalised on islands where snakes have been present for much longer periods. We experimentally manipulated relative head size in captive neonatal snakes to quantify the costs of adaptive plasticity. Although small-headed snakes were able to increase their head sizes when offered large prey, the delay in doing so, and their inability to consume large prey at the outset, significantly reduced their growth rates relative to conspecifics with larger heads at the beginning of the experiment. This study describes a proximate cause to the post-colonisation erosion of developmental plasticity recorded in tiger snake populations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Consequences of genetic erosion on fitness and phenotypic plasticity in European tree frog populations (Hyla arborea).

The detrimental effects of genetic erosion on small isolated populations are widely recognized contrary to their interactions with environmental changes. The ability of genotypes to plastically respond to variability is probably essential for the persistence of these populations. Genetic erosion impact may be exacerbated if inbreeding affects plastic responses or if their maintenance were at hi...

متن کامل

Phenotypic plasticity, costs of phenotypes, and costs of plasticity: toward an integrative view.

Why are some traits constitutive and others inducible? The term costs often appears in work addressing this issue but may be ambiguously defined. This review distinguishes two conceptually distinct types of costs: phenotypic costs and plasticity costs. Phenotypic costs are assessed from patterns of covariation, typically between a focal trait and a separate trait relevant to fitness. Plasticity...

متن کامل

Costs and limits of phenotypic plasticity: Tests with predator-induced morphology and life history in a freshwater snail

Potential constraints on the evolution of phenotypic plasticity were tested using data from a previous study on predator-induced morphology and life history in the freshwater snail Physa heterostropha. The benefit of plasticity can be reduced if facultative development is associated with energetic costs, developmental instability, or an impaired developmental range. I examined plasticity in two...

متن کامل

Undermining the Baldwin expediting effect: does phenotypic plasticity accelerate evolution?

The claim that phenotypic plasticity speeds up evolution towards a target phenotype is a recent incarnation of the Baldwin effect. To differentiate this theory from earlier interpretations of Baldwin's ideas, we name it the Baldwin expediting effect. Models that demonstrate this effect assume an extreme fitness scenario which bestows high fitness upon a single optimal phenotype and treats all o...

متن کامل

Environmental stress and the costs of whole-organism phenotypic plasticity in tadpoles.

Costs of phenotypic plasticity are important for the evolution of plasticity because they prevent organisms from shaping themselves at will to match heterogeneous environments. These costs occur when plastic genotypes have relatively low fitness regardless of the trait value expressed. We report two experiments in which we measured selection on predator-induced plasticity in the behaviour and e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 213 5  شماره 

صفحات  -

تاریخ انتشار 2010